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Abstract

Changes in the parameters of dynamical systems can cause the state of the sys-

tem to shift between different qualitative regimes, called bifurcations. In stochas-

tic dynamical systems, particularly P-type bifurcations are difficult to quantify.

Currently, the common practice is to visually analyze the probability density func-

tion to determine the type of state, but this approach is limited to experienced

users, systems with small state spaces and mandate human intervention. In con-

trast, this study presents a new approach based on Topological Data Analysis

(TDA) that uses the superlevel persistence of the probability or kernel density

function to mathematically quantify P-type bifurcations.

Motivation

Determination of the state of a stochastic dynamical system and the inception of

a bifurcation is of immense interest to accurately understand, predict and control

the behaviour of systems, e.g.:

Population Growth

Aeroelastic Systems

Financial Markets

P-Bifurcations

Phenomenological (P-type) bifurcations are characterized by topological changes

in the probability density function. The changes can be shifts from monostability

to bistability or limit cycle oscillations or to more complex shapes:

Monostable Bistable Limit Cycle

Inverted Bistable Monostable with Limit Cycle

Point Cloud Persistent Homology

Persistent homology captures information about the shape of a parameterized

space by tracking how its homology changes as the parameter varies. For point

clouds, that parameter is a radius r of balls centred around each point.

1. Take a point cloud χ =1, · · · , xn} ⊂d given as input.

2. For a fixed r ≥ 0, the Rips complex is given by
R(χ, r) = {σ = {x0, · · · , xd} | ‖xi − xj‖ ≤ r for all i, j}.

3. Raise the r from 0 −→ ∞, and construct a sublevelset filtration, along with a
persistence diagram accordingly.

Cubical Persistent Homology

Persistent homology can also be computed for image data. For such data, the

filtration is based on the height of the data points, and persistence diagram shows

the number of connected components and loops (H0 and H1 classes respectively).

Method

Given a Probability Density

1. Compute cubical persistence for different bifurcation parameter values.

2. Quantify a bifurcation using a change in ranks of homology groups.

Given a Kernel Density

1. Compute point cloud persistent homology for different bifurcation parameter

values at various height levels. For topological consistency using noisy kernel

density, see [1].

2. Observe changes in ranks of homology groups.

Example: Duffing Oscillator [2]
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Probability Density

Rank of H0 class changes from 1 to 2 with no change in H1

Kernel Density

Rank of H0 class changes from 1 to 2 with no change in H1

Conclusion

1. A novel tool for detecting P-bifurcations and knowing the state of the system.

2. A change in the topology of the PDF or KDE results in an abrupt change in the

ranks of various homology classes.
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